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Exercise 1. Do the same for the other two entangled triplet states,

|T2⟩ =
1√
2
(|uu⟩+ |dd⟩)

|T3⟩ =
1√
2
(|uu⟩ − |dd⟩)

As for previous exercise, this is just about crunching numbers. We won’t be using the Pauli matrices
explicitly here; instead, we’ll use the multiplication table from L06E04

σz|uu⟩ = |uu⟩; τz|uu⟩ = |uu⟩
σz|ud⟩ = |ud⟩; τz|ud⟩ = −|ud⟩
σz|du⟩ = −|du⟩; τz|du⟩ = |du⟩
σz|dd⟩ = −|dd⟩; τz|dd⟩ = −|dd⟩

σx|uu⟩ = |du⟩; τx|uu⟩ = |ud⟩
σx|ud⟩ = |dd⟩; τx|ud⟩ = |uu⟩
σx|du⟩ = |uu⟩; τx|du⟩ = |dd⟩
σx|dd⟩ = |ud⟩; τx|dd⟩ = |du⟩

σy|uu⟩ = i|du⟩; τy|uu⟩ = i|ud⟩
σy|ud⟩ = i|dd⟩; τy|ud⟩ = −i|uu⟩
σy|du⟩ = −i|uu⟩; τy|du⟩ = i|dd⟩
σy|dd⟩ = −i|ud⟩; τy|dd⟩ = −i|du⟩

As the computations are fairly similar, and to save space, I’ll be computing the expectation values for
T2 and T3 in parallel, distinguishing them by a subscript number.
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Let’s start with ⟨σzτz⟩:

⟨σzτz⟩2 := ⟨T2|σzτz|T2⟩ ⟨σzτz⟩3 := ⟨T3|σzτz|T3⟩

=
1√
2
⟨T2|σzτz (|uu⟩+ |dd⟩) =

1√
2
⟨T3|σzτz (|uu⟩ − |dd⟩)

=
1√
2
⟨T2|σz (|uu⟩ − |dd⟩) =

1√
2
⟨T3|σz (|uu⟩+ |dd⟩)

=
1√
2
⟨T2| (|uu⟩+ |dd⟩) =

1√
2
⟨T3| (|uu⟩ − |dd⟩)

=
1

2
(⟨uu|+ ⟨dd|)(|uu⟩+ |dd⟩) =

1

2
(⟨uu| − ⟨dd|)(|uu⟩ − |dd⟩)

=
1

2

⟨uu|uu⟩︸ ︷︷ ︸
1

+ ⟨uu|dd⟩︸ ︷︷ ︸
0

+ ⟨dd|uu⟩︸ ︷︷ ︸
0

+ ⟨dd|dd⟩︸ ︷︷ ︸
1

 =
1

2

⟨uu|uu⟩︸ ︷︷ ︸
1

−⟨uu|dd⟩︸ ︷︷ ︸
0

−⟨dd|uu⟩︸ ︷︷ ︸
0

+ ⟨dd|dd⟩︸ ︷︷ ︸
1


= +1 = +1

Moving on to ⟨σxτx⟩:

⟨σxτx⟩2 := ⟨T2|σxτx|T2⟩ ⟨σxτx⟩3 := ⟨T3|σxτx|T3⟩

=
1√
2
⟨T2|σxτx (|uu⟩+ |dd⟩) =

1√
2
⟨T3|σxτx (|uu⟩ − |dd⟩)

=
1√
2
⟨T2|σx (|ud⟩+ |du⟩) =

1√
2
⟨T3|σx (|ud⟩ − |du⟩)

=
1√
2
⟨T2| (|dd⟩+ |uu⟩) =

1√
2
⟨T3| (|dd⟩ − |uu⟩)

=
1

2
(⟨uu|+ ⟨dd|)(|dd⟩+ |uu⟩) =

1

2
(⟨uu| − ⟨dd|)(|dd⟩ − |uu⟩)

=
1

2

⟨uu|dd⟩︸ ︷︷ ︸
0

+ ⟨uu|uu⟩︸ ︷︷ ︸
1

+ ⟨dd|dd⟩︸ ︷︷ ︸
1

+ ⟨dd|uu⟩︸ ︷︷ ︸
0

 =
1

2

⟨uu|dd⟩︸ ︷︷ ︸
0

−⟨uu|uu⟩︸ ︷︷ ︸
1

−⟨dd|dd⟩︸ ︷︷ ︸
1

+ ⟨dd|uu⟩︸ ︷︷ ︸
0


= +1 = −1

Finally for ⟨σyτy⟩:

⟨σyτy⟩2 := ⟨T2|σyτy|T2⟩ ⟨σyτy⟩3 := ⟨T3|σyτy|T3⟩

=
1√
2
⟨T2|σyτy (|uu⟩+ |dd⟩) =

1√
2
⟨T3|σyτy (|uu⟩ − |dd⟩)

=
1√
2
⟨T2|σy (i|ud⟩ − i|du⟩) =

1√
2
⟨T3|σy (i|ud⟩+ i|du⟩)

=
i√
2
⟨T2| (i|dd⟩+ i|uu⟩) =

i√
2
⟨T3| (i|dd⟩ − i|uu⟩)

= − 1

2
(⟨uu|+ ⟨dd|)(|dd⟩+ |uu⟩) = − 1

2
(⟨uu| − ⟨dd|)(|dd⟩ − |uu⟩)

=
−1

2

⟨uu|dd⟩︸ ︷︷ ︸
0

+ ⟨uu|uu⟩︸ ︷︷ ︸
1

+ ⟨dd|dd⟩︸ ︷︷ ︸
1

+ ⟨dd|uu⟩︸ ︷︷ ︸
0

 =
−1

2

⟨uu|dd⟩︸ ︷︷ ︸
0

−⟨uu|uu⟩︸ ︷︷ ︸
1

−⟨dd|dd⟩︸ ︷︷ ︸
1

+ ⟨dd|uu⟩︸ ︷︷ ︸
0


= −1 = +1

We can conclude, from those expectation values alone, that whenever:

• The expectation value is −1, Bob and Alice measure a spin pointing in different directions;

• The expectation value is +1, Bob and Alice measure a spin pointing in the same direction.

I just want to spend a few more lines to make something clear. Recall the definition of |sing⟩:

|sing⟩ = 1√
2
(|ud⟩ − |du⟩)
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The argument of the authors was that, the reason for ⟨τzσz⟩ to be −1 was that |sing⟩ is built from two
spins, one of which is always up while the other is down, and we’re measuring both spin alongside the
axis on which they are either up or down.

However, in the case of e.g. ⟨τxσx⟩, the answer was not as obviously, because we’re in this case measuring
the spins alongside the x-axis, and it’s not immediate from the expression of |sing⟩ what kind of balance
we have alongside the x-axis.

Let’s do a little experiment. Recall the definition of the ”basis vectors” for the x-axis, left and right:

|r⟩ = 1√
2
(|u⟩+ |d⟩); |l⟩ = 1√

2
(|u⟩ − |d⟩)

We want to express, say, T3 in terms of |l⟩ and |r⟩, to see if indeed, when expressed as such, T3 is created
from two spins such that when one is left, the other is right, which would be concordant with the idea
that ⟨σxτx⟩3 = −1. Let’s start by rewriting |u⟩ and |d⟩ in terms of |r⟩ and |l⟩:{

|r⟩ = 1√
2
(|u⟩+ |d⟩)

|l⟩ = 1√
2
(|u⟩ − |d⟩)

⇔

{
|u⟩ =

√
2|r⟩ − |d⟩

|d⟩ = −
√
2|l⟩+ |u⟩

⇔

{
|u⟩ =

√
2
2 (|r⟩+ |l⟩)

|d⟩ =
√
2
2 (|r⟩ − |l⟩)

Let’s now rewrite T3 in the |r⟩, |l⟩ basis:

|T3⟩ =
1√
2
(|uu⟩ − |dd⟩)

=
1√
2
(|u} ⊗ |u⟩ − |d} ⊗ |d⟩)

=
1√
2

(
2

4
(|r}+ |l})(|r⟩+ |l⟩)− 2

4
(|r} − |l})(|r⟩ − |l⟩)

)
=

1

2
√
2
(|rr⟩+ |rl⟩+ |lr⟩+ |ll⟩ − (|rr⟩ − |rl⟩ − |lr⟩+ |ll⟩))

=
1√
2
(|rl⟩+ |lr⟩)

And indeed, as expected, T3 is built from two spins such that when one is left, the other is right. Let’s
do another one to be sure: consider T2 on the x-axis: this gives us a +1, so we expect a normalized
linear combination of |rr⟩ and |ll⟩.

|T2⟩ =
1√
2
(|uu⟩+ |dd⟩)

=
1√
2
(|u} ⊗ |u⟩+ |d} ⊗ |d⟩)

=
1√
2

(
2

4
(|r}+ |l})(|r⟩+ |l⟩) + 2

4
(|r} − |l})(|r⟩ − |l⟩)

)
=

1

2
√
2
(|rr⟩+ |rl⟩+ |lr⟩+ |ll⟩+ (|rr⟩ − |rl⟩ − |lr⟩+ |ll⟩))

=
1√
2
(|rr⟩+ |ll⟩)
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