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Exercise 1. A system of two spins has the Hamiltonian

H =
ω

2
σ · τ

What are the possible energies of the system, and what are the eigenvectors of the Hamiltonian?

Suppose the system starts in the state |uu⟩. What is the state at any later time? Answer the same
question for initial states |ud⟩, |du⟩, and |dd⟩.

The first part of the question essentially is about diagonalizing the Hamiltonian: the eigenvalues cor-
respond to the measurable values for the energy. More generally, the exercise is about repeating what
we’ve done earlier in chapter 4, in particular in exercise L04E06, meaning, applying what the authors
call the recipe for a Schrödinger Ket (section 4.13):

1. Derive, look up, guess, borrow, or steal the Hamiltonian operator H;

2. Prepare an initial state |Ψ(0)⟩;

3. Find the eigenvalues and eigenvectors of H by solving the time-independent Schrödinger equation,

H|Ej⟩ = Ej |Ej⟩

4. Use the initial state-vector |Ψ(0)⟩, along with the eigenvectors |Ej⟩ from step 3, to calculate the
initial coefficients αj(0):

αj(0) = ⟨Ej |Ψ(0)⟩

5. Rewrite |Ψ(0)⟩ in terms of the eigenvectors |Ej⟩ and the initial coefficients αj(0):

|Ψ(0)⟩ =
∑
j

αj(0)|Ej⟩

6. In the above equation, replace each αj(0) with αj(t) to capture its time-dependence. As a result,
|Ψ(0)⟩ becomes |Ψ(t)⟩:

|Ψ(t)⟩ =
∑
j

αj(t)|Ej⟩

7. Using Eq. 4.301, replace each αj(t) with αj(0) exp(− i
ℏEjt):

|Ψ(t)⟩ =
∑
j

αj(0) exp(−
i

ℏ
Ejt)|Ej⟩

1This equation corresponds exactly to what this step describes
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We’ll start by diagonalizing H, and then, by loosely applying the rest of the procedure with the various
proposed initial states. Recall from the previous exercise that we’ve found 4 eigenvectors for σ · τ :

(σ · τ )|sing⟩ = − 3|sing⟩
(σ · τ )|T1⟩ = + 1|T1⟩
(σ · τ )|T2⟩ = + 1|T2⟩
(σ · τ )|T3⟩ = + 1|T3⟩

Let’s recall the expression of those 4 vectors in the up/down basis:

|sing⟩ = 1√
2
(|ud⟩ − |du⟩) ; |T1⟩ =

1√
2
(|ud⟩+ |du⟩)

|T2⟩ =
1√
2
(|uu⟩+ |dd⟩) ; |T3⟩ =

1√
2
(|uu⟩ − |dd⟩)

It is immediate to check that those eigenvectors all have norm 1, and that they are orthogonal pairwise2.

Furthermore, we know that σ · τ is an operator in a 4 dimensional vector space A⊗ B3. And we know
from the spectral theorem (aka, the fundamental theorem, proved in L03E01) that the eigenvectors of a
Hermitian operator (i.e. an observable) make an orthonormal basis for the surrounding vector space.

Hence we can conclude that our 4 eigenvectors |sing⟩, |T1⟩, |T2⟩, and |T3⟩ are the eigenvectors of σ · τ :
there are no others, for we’ve reached the dimension of our vector space A⊗B. By scaling our operator by
ω/2, we find back our Hamiltonian H, for which we then have the same eigenvectors, only the eigenvalues
now need to be shifted likewise:

H|sing⟩ = −3ω

2
|sing⟩; H|T1⟩ =

+ω

2
|T1⟩

H|T2⟩ =
+ω

2
|T2⟩; H|T3⟩ =

+ω

2
|T3⟩

Hence, we can only measure two values for the energy:

Esing =
−3ω

2
; ET1

= ET2
= ET3

=
+ω

2

And our eigenvectors are:

|sing⟩, |T1⟩, |T2⟩, |T3⟩

At this point, we’ve reached the end of step 3. of the recipe for a Schrödinger cat recalled earlier. We’re
now ready to follow through the other steps, by varying the initial state. Let’s start as suggested with
|Ψuu(0)⟩ = |uu⟩: we’re trying to rewrite this initial vector state in the basis corresponding to the eigen-
vectors of our observable (our Hamiltonian).

To this effect, we start by computing the coefficient αj(0):

αsing(0) := ⟨sing|Ψuu(0)⟩ αT1
(0) := ⟨T1|Ψuu(0)⟩

= ⟨sing|uu⟩ = ⟨T1|uu⟩

=
1√
2
(⟨ud| − ⟨du|)|uu⟩ =

1√
2
(⟨ud|+ ⟨du|)|uu⟩

= 0 = 0

2If unsure, compute respectively the norm, which is derived from the inner-product: ||Ψ⟩| :=
√

⟨Ψ|Ψ⟩, and that the
same inner-product between two vectors is zero iff said vectors are orthogonal

3If this is unclear, you can refer to the beginning on this Chapter (6), where we explore how the combine vector space
was built
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αT2(0) := ⟨T2|Ψuu(0)⟩ αT3(0) := ⟨T3|Ψuu(0)⟩
= ⟨T2|uu⟩ = ⟨T3|uu⟩

=
1√
2
(⟨uu|+ ⟨dd|)|uu⟩ =

1√
2
(⟨uu| − ⟨dd|)|uu⟩

=
1√
2

=
1√
2

Hence we can rewrite (step 5.) |Ψuu(0)⟩ = |uu⟩ in the eigenbase:

|Ψuu(0)⟩ = |uu⟩ =
∑
j

αj(0)|Ej⟩ =
1√
2
(|T2⟩+ |T3⟩)

And from a previous equation (4.30) we can find the evolution over time of our state:

|Ψuu(t)⟩ =
∑
j

αj(0) exp(−
i

ℏ
Ejt)|Ej⟩

That is:

|Ψuu(t)⟩ =
1√
2
exp(−ωi

2ℏ
t)(|T2⟩+ |T3⟩)

Let’s repeat the exact same process, but this time with an initial state |Ψud(0)⟩ = |ud⟩. I’ll just perform
the computation, you can refer to the previous steps if need be.

αsing(0) := ⟨sing|Ψud(0)⟩ αT1
(0) := ⟨T1|Ψud(0)⟩

= ⟨sing|ud⟩ = ⟨T1|ud⟩

=
1√
2
(⟨ud| − ⟨du|)|ud⟩ =

1√
2
(⟨ud|+ ⟨du|)|ud⟩

=
1√
2

=
1√
2

αT2(0) := ⟨T2|Ψud(0)⟩ αT3(0) := ⟨T3|Ψud(0)⟩
= ⟨T2|ud⟩ = ⟨T3|ud⟩

=
1√
2
(⟨uu|+ ⟨dd|)|ud⟩ =

1√
2
(⟨uu| − ⟨dd|)|ud⟩

= 0 = 0

But:

|Ψud(t)⟩ =
∑
j

αj(0) exp(−
i

ℏ
Ejt)|Ej⟩

So:

|Ψud(t)⟩ =
1√
2

(
exp(

3ωi

2ℏ
t)|sing⟩+ exp(−ωi

2ℏ
t)|T1⟩

)

Let’s do it more time, with an initial state of |Ψdu(0)⟩ = |du⟩.

αsing(0) := ⟨sing|Ψdu(0)⟩ αT1
(0) := ⟨T1|Ψdu(0)⟩

= ⟨sing|du⟩ = ⟨T1|du⟩

=
1√
2
(⟨ud| − ⟨du|)|du⟩ =

1√
2
(⟨ud|+ ⟨du|)|du⟩

= − 1√
2

=
1√
2
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αT2(0) := ⟨T2|Ψdu(0)⟩ αT3(0) := ⟨T3|Ψdu(0)⟩
= ⟨T2|du⟩ = ⟨T3|du⟩

=
1√
2
(⟨uu|+ ⟨dd|)|du⟩ =

1√
2
(⟨uu| − ⟨dd|)|du⟩

= 0 = 0

But:

|Ψdu(t)⟩ =
∑
j

αj(0) exp(−
i

ℏ
Ejt)|Ej⟩

So:

|Ψdu(t)⟩ =
1√
2

(
exp(−ωi

2ℏ
t)|T1⟩ − exp(

3ωi

2ℏ
t)|sing⟩

)

One last time, starting from |Ψdd(0)⟩ = |dd⟩.

αsing(0) := ⟨sing|Ψdd(0)⟩ αT1
(0) := ⟨T1|Ψdd(0)⟩

= ⟨sing|dd⟩ = ⟨T1|dd⟩

=
1√
2
(⟨ud| − ⟨du|)|dd⟩ =

1√
2
(⟨ud|+ ⟨du|)|dd⟩

= 0 = 0

αT2(0) := ⟨T2|Ψdd(0)⟩ αT3(0) := ⟨T3|Ψdd(0)⟩
= ⟨T2|dd⟩ = ⟨T3|dd⟩

=
1√
2
(⟨uu|+ ⟨dd|)|dd⟩ =

1√
2
(⟨uu| − ⟨dd|)|dd⟩

=
1√
2

= − 1√
2

But:

|Ψdd(t)⟩ =
∑
j

αj(0) exp(−
i

ℏ
Ejt)|Ej⟩

So:

|Ψdd(t)⟩ =
1√
2
exp(−ωi

ℏ
t) (|T2⟩ − |T3⟩)
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