The Theoretical Minimum
 Quantum Mechanics - Solutions

L07E01
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Write the tensor product $I \otimes \tau_{x}$ as a matrix, and apply that matrix to each of the $|u u\rangle$, $|u d\rangle,|d u\rangle$, and $|d d\rangle$ column vectors. Show that Alice's half of the state-vector is unchanged in each case. Recall that I is the 2×2 unit matrix.

Recall that τ_{x} is a Pauli matrix, while I really is the identity matrix:

$$
\tau_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ; \quad I=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

We saw two different ways of building $I \otimes \tau_{x}$. Let's start with the first one: consider the usual ordered basis of the underlying composite space: $\{|u u\rangle,|u d\rangle,|d u\rangle,|d d\rangle\}$. Then, the elements of the matrix representation of $I \otimes \tau_{x}$ in this basis are given by:

$$
\left(I \otimes \tau_{x}\right)_{a b, c d}=\langle a b|\left(I \otimes \tau_{x}\right)|c d\rangle
$$

We can then use the multiplication table from either the appendix or from L06E04, where, remember, τ_{x} in this multiplication table was a shortcut notation for $I \otimes \tau_{x}$.

$$
\begin{aligned}
\tau_{x}|u u\rangle & =|u d\rangle ; & & \tau_{x}|u d\rangle=|u u\rangle \\
\tau_{x}|d u\rangle & =|d d\rangle ; & & \tau_{x}|d d\rangle=|d u\rangle
\end{aligned}
$$

And we're now ready to evaluate the operator's matrix form:

$$
\begin{aligned}
& I \otimes \tau_{x} "="\left(\begin{array}{llll}
\langle u u|\left(I \otimes \tau_{x}\right)|u u\rangle & \langle u u|\left(I \otimes \tau_{x}\right)|u d\rangle & \langle u u|\left(I \otimes \tau_{x}\right)|d u\rangle & \langle u u|\left(I \otimes \tau_{x}\right)|d d\rangle \\
\langle u d|\left(I \otimes \tau_{x}\right)|u u\rangle & \langle u d|\left(I \otimes \tau_{x}\right)|u d\rangle & \langle u d|\left(I \otimes \tau_{x}\right)|d u\rangle & \langle u d|\left(I \otimes \tau_{x}\right)|d d\rangle \\
\langle d u|\left(I \otimes \tau_{x}\right)|u u\rangle & \langle d u|\left(I \otimes \tau_{x}\right)|u d\rangle & \langle d u|\left(I \otimes \tau_{x}\right)|d u\rangle & \left.\langle d u|\left|\left(I \otimes \tau_{x}\right)\right| d d\right\rangle \\
\langle d d|\left(I \otimes \tau_{x}\right)|u u\rangle & \langle d d|\left(I \otimes \tau_{x}\right)|u d\rangle & \langle d d|\left(I \otimes \tau_{x}\right)|d u\rangle & \langle d d|\left(I \otimes \tau_{x}\right)|d d\rangle
\end{array}\right) \\
& "="\left(\begin{array}{lll}
\langle u u \mid u d\rangle & \langle u u \mid u u\rangle & \langle u u \mid d d\rangle \\
\langle u d \mid u d\rangle & \langle u d \mid u u\rangle & \langle u d \mid d d\rangle \\
\langle u d \mid d u\rangle \\
\langle d u \mid u d\rangle & \langle d u \mid u u\rangle & \langle d u \mid d d\rangle \\
\langle d d \mid u d\rangle & \langle d u \mid d u\rangle \\
\langle d d \mid u u\rangle & \langle d d \mid d d\rangle & \langle d d \mid d u\rangle
\end{array}\right) \\
& "="\left(\begin{array}{llll}
\left.\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Let's move on to the second way, which consists in using Eq. 7.6 of the book:

$$
A \otimes B=\left(\begin{array}{ll}
A_{11} B & A_{12} B \\
A_{21} B & A_{22} B
\end{array}\right)
$$

Which then yields:

$$
\begin{aligned}
& I \otimes \tau_{x} "=" \quad\left(\begin{array}{ll}
1 \times \tau_{x} & 0 \times \tau_{x} \\
0 \times \tau_{x} & 1 \times \tau_{x}
\end{array}\right) \\
& "="\left(\begin{array}{ll}
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{array}\right) \\
& "="\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Which is exactly what we've found earlier, albeit less tediously.

In our usual ordered basis $\{|u u\rangle,|u d\rangle,|d u\rangle,|d d\rangle\}$, the column representations of the basis vectors are as follow:

$$
|u u\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right) ; \quad|u d\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) ; \quad|d u\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right) ; \quad|d d\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

Remark 1. Remember than the column notation is merely a syntactical shortcut over linear combinations of the basis vectors:

$$
\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right):=a|u u\rangle+b|u d\rangle+c|d u\rangle+d|d d\rangle
$$

Remark 2. Note that we could also have used, as the authors did in the book, Eq. 7.6 to derive them.
Then it's just a matter of computing some elementary matrix \times vector products. As a shortcut, one can also recall from one's linear algebra class than such products, when they involve basis vectors, are simply a matter of extracting the columns of the matrix (which is fairly trivial to see):

$$
\begin{aligned}
& \left(I \otimes \tau_{x}\right)|u u\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=|u d\rangle ; \quad\left(I \otimes \tau_{x}\right)|u d\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=|u u\rangle ; \\
& \left(I \otimes \tau_{x}\right)|d u\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=|d d\rangle ; \quad\left(I \otimes \tau_{x}\right)|d d\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=|d u\rangle
\end{aligned}
$$

Remark 3. Naturally, this is consistent with the multiplication table we've recalled earlier; and Alice's part of the state is indeed kept unchanged, as expected.

