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Exercise 1. Write the tensor product I @ 1, as a matriz, and apply that matriz to each of the |uu),
lud), |du), and |dd) column vectors. Show that Alice’s half of the state-vector is unchanged in each case.
Recall that I is the 2 x 2 unit matriz.

Recall that 7, is a Pauli matrix, while I really is the identity matrix:
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We saw two different ways of building I ® 7,. Let’s start with the first one: consider the usual or-
dered basis of the underlying composite space: {|uu), |ud), |du),|dd)}. Then, the elements of the matrix
representation of I ® 7, in this basis are given by:

(I @ Ty)ab,ca = (ab|(I & 7y)|cd)

We can then use the multiplication table from either the appendix or from LO6E04) where, remember,
T, in this multiplication table was a shortcut notation for I ® 7.

Teluu) = |ud); Telud) = |uu)
Te|duy = |dd); T|dd) = |du)

And we're now ready to evaluate the operator’s matrix form:
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Let’s move on to the second way, which consists in using Eq. 7.6 of the book:

o AllB A12B
A0B = <A2lB AQQB>
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Which then yields:

Which is exactly what we’ve found earlier, albeit less tediously.

In our usual ordered basis {|uu), |ud), |du),|dd)}, the column representations of the basis vectors are as
follow:

1 0 0 0
0 1 0 0
= | 0|+ Judy= | |5 lawy=| 7] 1ddy= |
0 0 0 1

Remark 1. Remember than the column notation is merely a syntactical shortcut over linear combinations
of the basis vectors:

= aluu) + blud) + c|du) + d|dd)
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Remark 2. Note that we could also have used, as the authors did in the book, Eq. 7.6 to derive them.

Then it’s just a matter of computing some elementary matrixxvector products. As a shortcut, one can
also recall from one’s linear algebra class than such products, when they involve basis vectors, are simply
a matter of extracting the columns of the matrix (which is fairly trivial to see):
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(I ®7y)|du) = 0 =|dd); (I®7,)|dd) = 1 = |du)
1 0

Remark 3. Naturally, this is consistent with the multiplication table we’ve recalled earlier; and Alice’s
part of the state is indeed kept unchanged, as expected.



