The Theoretical Minimum
 Quantum Mechanics - Solutions

L07E04
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm

M. Bivert

May 10, 2023

Exercise 1. Calculate the density matrix for:

$$
|\Psi\rangle=\alpha|u\rangle+\beta|d\rangle
$$

Answer:

$$
\begin{gathered}
\psi(u)=\alpha ; \quad \psi^{*}(u)=\alpha^{*} \\
\psi(d)=\beta ; \quad \psi^{*}(d)=\beta^{*} \\
\rho_{a^{\prime} a}=\left(\begin{array}{cc}
\alpha^{*} \alpha & \alpha^{*} \beta \\
\beta^{*} \alpha & \beta^{*} \beta
\end{array}\right)
\end{gathered}
$$

Now try plugging in some numbers for α and β. Make sure they are normalized to 1. For example, $\alpha=\frac{1}{\sqrt{2}}, \beta=\frac{1}{\sqrt{2}}$.
Start by recalling the definition of the density matrix for a single spin in a known state:

$$
\rho_{a a^{\prime}}=\psi^{*}\left(a^{\prime}\right) \psi(a)
$$

Now we have no wave function ψ in the exercise statement (the answer set aside), but we can find it by identification with general form of $|\Psi\rangle$:

$$
|\Psi\rangle=\sum_{a, b, c, \ldots} \psi(a, b, c, \ldots)|a, b, c, \ldots\rangle
$$

Hence, $\psi(u)$ is the component of $|\Psi\rangle$ following the $|u\rangle$ axis, and $\psi(d)$ the one on the $|d\rangle$ axis:

$$
\psi(u)=\langle u \mid \Psi\rangle=\alpha ; \quad \psi(d)=\langle d \mid \Psi\rangle=\beta
$$

Immediately:

$$
\psi^{*}(u)=\alpha^{*} ; \quad \psi^{*}(d)=\beta^{*}
$$

Then it's just about packaging all the $\rho_{a a^{\prime}}$ in a matrix: the basis is ordered $(\{|u\rangle,|d\rangle\})$ hence:

$$
\left.\rho=\left(\begin{array}{cc}
\rho_{u u} & \rho_{u d} \\
\rho_{d u} & \rho_{d d}
\end{array}\right)=\left(\begin{array}{cc}
\psi^{*}(u) \psi(u) & \psi^{*}(d) \psi(u) \\
\psi^{*}(u) \psi(d) & \psi^{*}(d) \psi(d)
\end{array}\right)=\begin{array}{cc}
\alpha^{*} \alpha & \beta^{*} \alpha \\
\alpha^{*} \beta & \beta^{*} \beta
\end{array}\right)
$$

Remark 1. We could also use the fact that the density operator is defined as a linear combination of of projectors corresponding to the potential states of the system, each scaled by a probability, and so that the sum of those probabilities is 1 , e.g.:

$$
\rho=\sum_{i} P_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| ; \quad \text { where: } \sum_{i} P_{i}=1
$$

As we're in the case of a single spin in a known state $|\Psi\rangle$, this reduces to

$$
\rho=1|\Psi\rangle\langle\Psi|=|\Psi\rangle\langle\Psi|
$$

Assuming again the ordered basis $\{|u\rangle,|d\rangle\}$, we can write $\langle\Psi|$ and $|\Psi\rangle$ in column form, and perform the outer-product:

$$
\rho=\binom{\alpha}{\beta}\left(\begin{array}{ll}
\alpha^{*} & \beta^{*}
\end{array}\right)=\left(\begin{array}{ll}
\alpha \alpha^{*} & \alpha \beta^{*} \\
\beta \alpha^{*} & \beta \beta^{*}
\end{array}\right)
$$

This allows us to double-check our previous result: it seems there's a typo in the exercise statement.

Let's compute a few density matrices for well-known states:

$$
\begin{aligned}
&|u\rangle=1|u\rangle+0|d\rangle \Rightarrow \\
& \rho_{|u\rangle}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
&|d\rangle=0|u\rangle+1|d\rangle \Rightarrow \quad \rho_{|d\rangle}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
&|r\rangle=\frac{1}{\sqrt{2}}|u\rangle+\frac{1}{\sqrt{2}}|d\rangle \Rightarrow \quad \rho_{|r\rangle}=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right) \\
&|l\rangle=\frac{1}{\sqrt{2}}|u\rangle-\frac{1}{\sqrt{2}}|d\rangle \quad \Rightarrow \quad \rho_{|l\rangle}=\left(\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right) \\
&|i\rangle=\frac{1}{\sqrt{2}}|u\rangle+\frac{i}{\sqrt{2}}|d\rangle \quad \Rightarrow \quad \rho_{|i\rangle}=\left(\begin{array}{cc}
1 / 2 & -i / 2 \\
i / 2 & 1 / 2
\end{array}\right) \\
&|o\rangle=\frac{1}{\sqrt{2}}|u\rangle-\frac{i}{\sqrt{2}}|d\rangle \quad \Rightarrow \quad \rho_{|o\rangle}=\left(\begin{array}{cc}
1 / 2 & i / 2 \\
-i / 2 & 1 / 2
\end{array}\right)
\end{aligned}
$$

The French version of this exercis ϵ^{1} is a bit more interesting, there are a few additional questions. We can for instance check that ρ is Hermitian:

$$
\rho^{\dagger}=\left(\rho^{*}\right)^{T}=\left(\begin{array}{cc}
\left(\alpha^{*} \alpha\right)^{*} & \left(\beta^{*} \alpha\right)^{*} \\
\left(\alpha^{*} \beta\right)^{*} & \left(\beta^{*} \beta\right)^{*}
\end{array}\right)^{T}=\left(\begin{array}{cc}
\alpha \alpha^{*} & \beta \alpha^{*} \\
\alpha \beta^{*} & \beta \beta^{*}
\end{array}\right)^{T}=\left(\begin{array}{cc}
\alpha^{*} \alpha & \beta^{*} \alpha \\
\alpha^{*} \beta & \beta^{*} \beta
\end{array}\right)=: \rho
$$

Or that its trace is 1 , because of the normalization condition on $|\Psi\rangle$:

$$
\operatorname{Tr}(\rho)=\alpha^{*} \alpha+\beta^{*} \beta=1
$$

Finally, we can check that ρ projects to $|\Psi\rangle$. Consider a vector which has a component perpendicular to $|\Psi\rangle$, that is, in the direction of $\left|\Psi^{\perp}\right\rangle$, and a component in the direction of $|\Psi\rangle$

$$
|\Phi\rangle=\gamma\left|\Psi^{\perp}\right\rangle+\delta|\Psi\rangle
$$

By linearity:

$$
\rho|\Phi\rangle=\gamma \rho\left|\Psi^{\perp}\right\rangle+\delta \rho|\Psi\rangle
$$

Using the fact that $\rho=|\Psi\rangle\langle\Psi|$, we see, by associativity on the products, and by the orthogonality condition between $|\Psi\rangle$ and $\left|\Psi^{\perp}\right\rangle$:

$$
\rho\left|\Psi^{\perp}\right\rangle=(|\Psi\rangle\langle\Psi|)\left|\Psi^{\perp}\right\rangle=|\Psi\rangle(\underbrace{\left\langle\Psi \mid \Psi^{\perp}\right\rangle}_{=0})=0
$$

On the other hand, by the normalization condition on $|\Psi\rangle$:

$$
\left.\rho|\Psi\rangle=(|\Psi\rangle\langle\Psi|)\left|\Psi^{\rangle}=\right| \Psi\right\rangle(\underbrace{\langle\Psi \mid \Psi\rangle}_{=1})=|\Psi\rangle
$$

By injecting the two previous results in the one before, it follows that indeed that ρ projects a vector on the $|\Psi\rangle$ direction:

$$
\rho|\Phi\rangle=\delta|\Psi\rangle
$$

[^0]
[^0]: ${ }^{1}$ See https://leminimumtheorique.jimdofree.com/le\%C3\%A7on-7/exercice-7-4/ for a relevant excerpt, which by the way seems to confirm the typo hypothesis.

