The Theoretical Minimum
 Quantum Mechanics - Solutions

L07E05
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. a) Show that

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)^{2}=\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right)
$$

b) Now, suppose

$$
\rho=\left(\begin{array}{cc}
1 / 3 & 0 \\
0 & 2 / 3
\end{array}\right)
$$

Calculate

$$
\begin{gathered}
\rho^{2} \\
\operatorname{Tr}(\rho) \\
\operatorname{Tr}\left(\rho^{2}\right)
\end{gathered}
$$

c) If ρ is a density matrix, does it represent a pure state or a mixed state?

The exercise is fairly trivial.
a)

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)^{2}=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right)
$$

b) By application of the previous result,

$$
\left.\rho^{2}=\left(\begin{array}{cc}
1 / 3 & 0 \\
0 & 2 / 3
\end{array}\right)^{2}=\left(\begin{array}{cc}
(1 / 3)^{2} & 0 \\
0 & (2 / 3)^{2}
\end{array}\right)=\begin{array}{cc}
1 / 9 & 0 \\
0 & 4 / 9
\end{array}\right)
$$

Recall that there's a result alluded to by the authors in a footnote page 195 (section 7.2) that the trace of an operator is the sum of the diagonal elements of any matrix representation of this operator. Hence:

$$
\operatorname{Tr}(\rho)=\frac{1}{3}+\frac{2}{3}=1 ; \quad \operatorname{Tr}\left(\rho^{2}\right)=\frac{1}{9}+\frac{4}{9}=\frac{5}{9}
$$

c) We just saw in the book some properties of density matrices. In particular, for a pure state, and a density matrix ρ, we must have:

$$
\rho^{2}=\rho \text { and } \operatorname{Tr}(\rho)^{2}=1
$$

While for a mixed state, we must have:

$$
\rho^{2} \neq \rho \text { and } \operatorname{Tr}(\rho)^{2}<1
$$

Clearly, in our case, ρ represents a mixed state.

