The Theoretical Minimum
 Quantum Mechanics - Solutions

L07E06
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

May 10, 2023

Exercise 1. Use Eq. 7.22 to show that if ρ is a density matrix, then

$$
\operatorname{Tr}(\rho)=1
$$

Eq. 7.22 is the following:

$$
P(a)=\rho_{a a}
$$

Where $P(a)$ is the probability for an observable L tied to Alice's state space, extended to act on a composite state-space made from Alice's and Bob's, to be measured with the eigenvalue a. On the other hand, $\rho_{a a}$ corresponds to the diagonal elements of Alice's density matrix, expressed in Alice state space.

Well, there will be one $P(a)$ for each eigenvalue, and thus by Eq. 7.22, there is a systematic correspondence with the diagonal elements of the density matrix. But the trace of an operator is defined as the sum of the diagonal elements of a matrix representation of this operator, and it so happens that this value is unique up to a change of basis (meaning, the trace of an operator is the same for all matrix representation of this operator).

Hence because the eigenvalues a represent all the potential measurement values, we know that $\sum_{a} P(a)=$ 1, which by our previous reasoning implies indeed that

$$
\operatorname{Tr}(\rho):=\sum_{a} \rho_{a a}=\sum_{a} P(a)=1
$$

