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Exercise 1. Consider the following states

|ψ1⟩ =
1

2
(|uu⟩+ |ud⟩+ |du⟩+ |dd⟩)

|ψ2⟩ =
1√
2
(|uu⟩+ |dd⟩)

|ψ3⟩ =
1

5
(3|uu⟩+ 4|ud⟩)

For each one, calculate Alice’s density matrix, and Bob’s density matrix. Check their properties.

Let’s recall first the definition of the matrix elements for Alice’s density matrix, and second, by symmetry,
Bob’s:

ρa′a =
∑
b

ψ∗(a, b)ψ(a′, b); ρb′b =
∑
a

ψ∗(a, b)ψ(a, b′)

Let’s start with |ψ1⟩. We know Alice’s matrix must be of the form:

ρA =

(
ρuu ρud
ρdu ρdd

)
And so must be Bob’s actually. Filling in with our previous formulas, we obtain:

ρ1A =

(
ψ∗
1(u, u)ψ1(u, u) + ψ∗

1(u, d)ψ1(u, d) ψ∗
1(d, u)ψ1(u, u) + ψ∗

1(d, d)ψ1(u, d)
ψ∗
1(u, u)ψ1(d, u) + ψ∗

1(u, d)ψ1(d, d) ψ∗
1(d, u)ψ1(d, u) + ψ∗

1(d, d)ψ1(d, d)

)
=

(
(1/2)(1/2) + (1/2)(1/2) (1/2)(1/2) + (1/2)(1/2)
(1/2)(1/2) + (1/2)(1/2) (1/2)(1/2) + (1/2)(1/2)

)
=

(
1/2 1/2
1/2 1/2

)
Where, remember, the wave function’s values correspond to the basis vector coefficients, which are all
1/2 here. By symmetry, we would obtain exactly the same matrix for Bob:

ρ1B =

(
1/2 1/2
1/2 1/2

)
Let’s check the density matrices properties:

• Clearly, ρ1A = ρ1B is Hermitian;

• Its trace is 1/2 + 1/2 = 1, as expected;
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• Let’s compute its square:

ρ21A = ρ21B =

(
1/2 1/2
1/2 1/2

)(
1/2 1/2
1/2 1/2

)
=

(
1/2 1/2
1/2 1/2

)
= ρ1A = ρ1B

And Tr(ρ21A) = Tr(ρ21B) = 1, from which we can conclude that ψ1 is a pure state.

• Without having to compute them explicitly, this implies that its eigenvalues must be 0 and 1.

Let’s compute the eigenvalues by partially diagonalizing the matrix anyway for practice: an eigenvector
|λ⟩ is tied to an eigenvalue λ by:

ρ1A|λ⟩ = λ|λ⟩ ⇔ ρ1A|λ⟩ − λ|λ⟩ = 0 ⇔ (ρ1A − λI)|λ⟩ = 0

Because an eigenvector is by definition non-zero, this implies that ρ1A−λI must be non-invertible1. This
implies that:

det(ρ1A − λI) = 0 ⇔ 0 =

∣∣∣∣1/2− λ 1/2
1/2 1/2− λ

∣∣∣∣ = (1

2
− λ)2 − 1

2

2)
= (

1

2
− λ− 1

2
)(
1

2
− λ+

1

2
) = λ(λ− 1)

⇔

{
λ = 0

λ = 1

As expected.

Let’s move on to ψ2: by a similar reasoning as before we have:

ρ2A =

(
ψ∗
2(u, u)ψ2(u, u) + ψ∗

2(u, d)ψ2(u, d) ψ∗
2(d, u)ψ2(u, u) + ψ∗

2(d, d)ψ2(u, d)
ψ∗
2(u, u)ψ2(d, u) + ψ∗

2(u, d)ψ2(d, d) ψ∗
2(d, u)ψ2(d, u) + ψ∗

2(d, d)ψ2(d, d)

)
=

(
(1/

√
2)(1/

√
2) + (0)(0) (0)(1/

√
2) + (1/

√
2)(0)

(1/
√
2)(0) + (0)(1/

√
2) (0)(0) + (1/

√
2)(1/

√
2)

)
=

(
1/2 0
0 1/2

)
Again, by a symmetry argument, we can already conclude that ρ2B = ρ2A (the idea is that you can swap
the labels corresponding to Bob and Alice in the description of the state ψ2 and by reordering the terms,
you see that the state is unchanged).

Finally, let’s check the density matrices properties:

1. Clearly Hermitian;

2. Tr(ρ2A) = 1/2 + 1/2 = 1;

3. Let’s compute the square to determine the state quality:

ρ22A =

(
1/4 0
0 1/4

)
̸= ρ2A

and Tr(ρ22A) = 1/2 < 1: ψ2 is a mixed state ;

4. The matrix is diagonal: clearly, all its eigenvalue (there’s a single degenerate eigenvalue 1/2) are
positive and ≤ 1.

Moving on to the last one. Observe that this time, there is not symmetry between Alice and Bob
matrices, so we’ll have to compute them both.

1For otherwise, multiply both sides of the equation by its inverse: LHS is equal to |λ⟩ while the RHS is still equal to 0
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ρ3A =

(
ψ∗
3(u, u)ψ3(u, u) + ψ∗

3(u, d)ψ3(u, d) ψ∗
3(d, u)ψ3(u, u) + ψ∗

3(d, d)ψ3(u, d)
ψ∗
3(u, u)ψ3(d, u) + ψ∗

3(u, d)ψ3(d, d) ψ∗
3(d, u)ψ3(d, u) + ψ∗

3(d, d)ψ3(d, d)

)
=

(
(3/5)(3/5) + (4/5)(4/5) (0)(3/5) + (0)(4/5)
(3/5)(0) + (4/5)(0) (0)(0) + (0)(0)

)
=

(
9/25 + 16/25 0

0 0

)
=

(
1 0
0 0

)
Regarding density matrices properties:

1. Hermitian;

2. Tr(ρ3A) = 1 + 0 = 1;

3. ρ23A = ρ3A : ψ3 is a pure state ;

4. This is confirmed by the eigenvalues 1 and 0 (matrix trivially diagonal).

Remains Bob’s matrix!

ρ3B =

(
ψ∗
3(u, u)ψ3(u, u) + ψ∗

3(d, u)ψ3(d, u) ψ∗
3(u, u)ψ3(u, d) + ψ∗

3(d, u)ψ3(d, d)
ψ∗
3(u, d)ψ3(u, u) + ψ∗

3(d, d)ψ3(d, u) ψ∗
3(u, d)ψ3(u, d) + ψ∗

3(d, d)ψ3(d, d)

)
=

(
(3/5)(3/5) + (0)(0) (3/5)(4/5) + (0)(0)
(4/5)(3/5) + (0)(0) (4/5)(4/5) + (0)(0)

)
=

1

25

(
9 12
12 16

)
One last time, let’s check its density matrices properties:

1. Clearly Hermitian;

2. Tr(ρ3B) = 9/25 + 16/25 = 1;

3. Let’s square it to determine the state quality:

ρ23B =
1

252

(
9× 9 + 12× 12 9× 12 + 12× 16
12× 9 + 16× 12 12× 12 + 16× 16

)
=

1

252

(
81 + 100 + 40 + 4 90 + 18 + 100 + 80 + 12

90 + 18 + 100 + 80 + 12 100 + 40 + 4 + 100 + 120 + 36

)
=

1

252

(
225 300
300 400

)
=

1

252

(
(4× 2 + 1)× 25 3× 4× 25

3× 4× 25 4× 4× 25

)
=

1

25

(
9 12
12 16

)
= ρ3B

Thus Tr(ρ23B) = Tr(ρ3B) = 1 and ψ3 is a pure state ;

4. This implies again that its eigenvalues must be 0 and 1

Let’s compute the eigenvalues for practice, going a bit faster this time:∣∣∣∣9/25− λ 12/25
12/25 16/25− λ

∣∣∣∣ = 0 ⇔

((
9

25
− λ

)(
16

25
− λ

)
−
(
12

25

)2
)

= 0

⇔ λ2 − λ+
9× 16

252
−
(
12

25

)2

= 0
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⇔ λ2 − λ+
3× 3× 4× 4

252
− 3× 4× 3× 4

252
= 0

⇔ λ(λ− 1) = 0

⇔

{
λ = 0

λ = 1
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