The Theoretical Minimum
 Quantum Mechanics - Solutions

L09E02

Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/or github.com/mbivert/ttm
M. Bivert

July 2, 2023

Exercise 1. Prove Eq. 9.10 by expanding each site and comparing the results.
Eq. 9.10 is:

$$
\left[\boldsymbol{P}^{2}, \boldsymbol{X}\right]=\boldsymbol{P}[\boldsymbol{P}, \boldsymbol{X}]+[\boldsymbol{P}, \boldsymbol{X}] \boldsymbol{P}
$$

We're trying to compute the "velocity" of a free particle, meaning, the time derivative of its position operator \boldsymbol{X}, which can be performed thanks to an earlier formula derived in section 4.9 - Connections to classical mechanics:

$$
\frac{d}{d t}\langle\boldsymbol{X}\rangle=\frac{i}{\hbar}\langle[\boldsymbol{H}, \boldsymbol{X}]\rangle
$$

To push the computation forward, we then need to compute $[\boldsymbol{H}, \boldsymbol{X}]$, which is, for a free particle, up to a constant, equivalent to $\left[\boldsymbol{P}^{2}, \boldsymbol{X}\right]$.

Recall that the commutator measures how much two operators defined on a Hilbert space commute:

$$
[\boldsymbol{A}, \boldsymbol{B}]:=\boldsymbol{A} \boldsymbol{B}-\boldsymbol{B} \boldsymbol{A}
$$

Let's progressively expand both sides, keeping all expansions strictly equivalent:

$$
\begin{array}{rlrl}
& & {\left[\boldsymbol{P}^{2}, \boldsymbol{X}\right]} & =\boldsymbol{P}[\boldsymbol{P}, \boldsymbol{X}]+[\boldsymbol{P}, \boldsymbol{X}] \boldsymbol{P} \\
\Leftrightarrow & \boldsymbol{P}^{2} \boldsymbol{X}-\boldsymbol{X} \boldsymbol{P}^{2} & =\boldsymbol{P}(\boldsymbol{P} \boldsymbol{X}-\boldsymbol{X} \boldsymbol{P})+(\boldsymbol{P} \boldsymbol{X}-\boldsymbol{X} \boldsymbol{P}) \boldsymbol{P} \\
\Leftrightarrow & \boldsymbol{P} \boldsymbol{P} \boldsymbol{X}-\boldsymbol{X} \boldsymbol{P} \boldsymbol{P} & =\boldsymbol{P} \boldsymbol{P} \boldsymbol{X}-\boldsymbol{P} \boldsymbol{X} \boldsymbol{P}+\boldsymbol{P} \boldsymbol{X} \boldsymbol{P}-\boldsymbol{X} \boldsymbol{P} \boldsymbol{P} \\
\Leftrightarrow & \boldsymbol{P} \boldsymbol{P} \boldsymbol{X}-\boldsymbol{X} \boldsymbol{P} \boldsymbol{P} & =\boldsymbol{P} \boldsymbol{P} \boldsymbol{X}-\boldsymbol{X} \boldsymbol{P} \boldsymbol{P} \\
\Leftrightarrow & & 0 & 0 \\
\Leftrightarrow & & \text { true } & \square
\end{array}
$$

