The Theoretical Minimum
 Quantum Mechanics - Solutions

L09E03
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/or github.com/mbivert/ttm
M. Bivert

July 2, 2023

Exercise 1. Show that the right-hand side of Eq. 9.17 simplifies to the right-hand side of Eq. 9.16. Hint: First expand the second term by taking the derivative of the product. Then look for cancellations.

Eq. 9.17 and Eq. 9.16 are respectively:

$$
\begin{aligned}
{[\boldsymbol{V}(x), \boldsymbol{P}] \psi(x)=} & V(x)\left(-i \hbar \frac{d}{d x}\right) \psi(x)-\left(-i \hbar \frac{d}{d x}\right) V(x) \psi(x) \\
& {[\boldsymbol{V}(x), \boldsymbol{P}]=i \hbar \frac{d V(x)}{d x} }
\end{aligned}
$$

Let's start as suggested by expanding the second term of Eq. 9.17, ignoring the $-i \hbar$ factor for now: this is a basic product rule application:

$$
\left(\frac{d}{d x}\right)(V(x) \psi(x))=\frac{d V(x)}{d x} \psi(x)+V(x) \frac{d \psi(x)}{d x}
$$

The second term will cancel with the first term of the RHS of Eq. 9.17:

$$
\begin{aligned}
{[\boldsymbol{V}(x), \boldsymbol{P}] \psi(x) } & =V(x)\left(-i \hbar \frac{d}{d x}\right) \psi(x)-\left(-i \hbar \frac{d}{d x}\right) V(x) \psi(x) \\
& =-i \hbar V(x) \frac{d \psi(x)}{d x}+i \hbar\left(\frac{d V(x)}{d x} \psi(x)+V(x) \frac{d \psi(x)}{d x}\right) \\
& =i \hbar \frac{d V(x)}{d x} \psi(x)
\end{aligned}
$$

As long as $\psi(x) \neq 0$, we can divide by $\psi(x)$, and indeed establish Eq. 9.16:

$$
[\boldsymbol{V}(x), \boldsymbol{P}]=i \hbar \frac{d V(x)}{d x}
$$

