The Theoretical Minimum
 Quantum Mechanics - Solutions

L10E01
Last version: tales.mbivert.com/on-the-theoretical-minimum-solutions/ or github.com/mbivert/ttm
M. Bivert

July 2, 2023

Exercise 1. Find the second time derivative of x in Eq. 10.9, and thereby show that it solves Eq. 10.8. Eq. 10.9 and 10.8 respectively are:

$$
x(t)=A \cos (\omega t)+B \sin (\omega t) ; \quad-\omega^{2} x(t)=\ddot{x}(t)
$$

Where I've systematically made the time-dependence explicit by replacing x with $x(t)$. This is an elementary differentiation exercise that I think has already been performed in the previous volume on classical mechanics. Nevertheless:

$$
\begin{aligned}
\dot{x}(t) & =-A \omega \sin (\omega t)+B \omega \cos (\omega t) \\
\ddot{x}(t) & =-A \omega^{2} \cos (\omega t)-B \omega^{2} \sin (\omega t) \\
& =-\omega^{2} \underbrace{(A \cos (\omega t)+B \sin (\omega t))}_{=: x(t)} \\
& =-\omega^{2} x(t) \quad \square
\end{aligned}
$$

