You may want to inform yourself about human rights in China.

On the Inverse Fourier Transform (Proof)

date: 2023-06-28

PDF: schuller-QM18-fourier-inverse.pdf.

Commented demonstration of the invertibility of the Fourier transform on Schwartz space. Reworked from:

Definition 1. The Fourier operator is the linear map F:S(Rd)S(Rd) defined for xRd by: (F(f))(x):=1(2π)d/2Rdexp(ixy)f(y)ddy

Result 1. A well-known integration result, recalled in the lecture: Rexp(σx2)dx=πσ Which generalizes to Rd to: Rdexp(σx2)ddx=(πσ)d/2

Lemma 1. Let xRd and zC, such that (z)>0. Then: (F(xexp(z2x2)))(p)=1zd/2exp(12zp2)

Theorem 1. F:S(Rd)S(Rd) is invertible and: (F1(g))(x)=1(2π)d/2Rdexp(ipx)g(p)ddp

Proof. (F1(F(f)))(x)=1(2π)d/2Rdexp(ipx)(F(f))(p)ddp   (executing the proposed F1) =1(2π)d/2Rd(limϵ0exp(ϵ2p2))=1exp(ipx)(F(f))(p)ddp   (regulator) =limϵ01(2π)d/2Rdexp(ϵ2p2)exp(ipx)(F(f))(p)ddp   (Lebesgue dominatedconvergence) =limϵ01(2π)d/2Rdexp(ϵ2p2)exp(ipx)(1(2π)d/2Rdexp(ipy)f(y)ddy)ddp   (executing (F(f))(p)) =limϵ01(2π)d/2Rd(1(2π)d/2Rdexp(ϵ2p2)exp(ipx)exp(ipy)exp(ip(yx))ddp)f(y)ddy   (Fubini) =limϵ01(2π)d/2Rd(1(2π)d/2Rdexp(ϵ2p2)exp(ipz)ddp)=:(F(pexp(ϵ2p2))(z)f(z+x)ddz   (change of variable zyx;ddzddy) =limϵ01(2π)d/2Rd((F(pexp(ϵ2p2))(z))f(z+x)ddz   (Fourier operatordefinition) =limϵ01(2π)d/2Rd1ϵd/2exp(12(zϵ1/2)2)f(z+x)ddz   (previous lemma, with zϵ,pz) =limϵ01(2π)d/2Rdϵd/2ϵd/2exp(t22)f(tϵ1/2+x)ddt   (change of variable: tz/ϵ1/2,ddtddz/ϵd/2) =1(2π)d/2Rdexp(t22)limϵ0f(tϵ1/2+x)=f(x)ddt   (dominated convergence) =f(x)1(2π)d/2Rdexp(12t2)ddt=(2π)d/2   (previous well-knownintegration result, generalized) =f(x) F1F=idS(Rd)

We’ve proven that the proposed F1 is the left inverse of F; it remains to prove it is its right inverse. But the process is very similar: we use the same regulator, dominated convergence to swap the limit and the integral, and Fubini to swap the integration order.

Hopefully, without any typos: (F(F1(g)))(x)=1(2π)d/2Rdexp(ixy)(F1(g))(y)ddy   (executing F) =1(2π)d/2Rd(limϵ0exp(ϵ2y2))=1exp(ixy)(F1(g))(y)ddy   (regulator) =limϵ01(2π)d/2Rdexp(ϵ2y2)exp(ixy)(F1(g))(y)ddy   (Lebesgue dominatedconvergence) =limϵ01(2π)d/2Rdexp(ϵ2y2)exp(ixy)(1(2π)d/2Rdexp(ipy)g(p)ddp)ddy   (executing the proposed (F1(g))(y)) =limϵ01(2π)d/2Rd(1(2π)d/2Rdexp(ϵ2y2)exp(ipy)exp(ixy)exp(iy(xp))ddy)g(p)ddp   (Fubini) =limϵ01(2π)d/2Rd(1(2π)d/2Rdexp(ϵ2y2)exp(iyt)ddy)=:(F(yexp(ϵ2y2))(t)g(xt)ddt   (change of variable txp;ddtddp) =limϵ01(2π)d/2RdF(yexp(ϵ2y2))(t)g(xt)ddt   (Fourier operatordefinition) =limϵ01(2π)d/2Rd1ϵd/2exp(12(tϵ1/2)2)g(xt)ddt   (previous lemma, with zϵ,pt) =limϵ01(2π)d/2Rdϵd/2ϵd/2exp(z22)g(xzϵ1/2)ddz   (change of variable: zt/ϵ1/2,ddzddt/ϵd/2) =1(2π)d/2Rdexp(z22)limϵ0g(xzϵ1/2)=g(x)ddz   (dominated convergence) =g(x)1(2π)d/2Rdexp(12z2)ddz=(2π)d/2   (previous well-knownintegration result, generalized) =g(x) FF1=idS(Rd) ◻


Comments

By email, at mathieu.bivert chez:

email